

Odoo DevOps

Note

The project is moved to https://itpp.dev/ops/ and will be shutdown here soon

Contents:

	Docker

	Kubernetes
	Kubernetes solutions

	Minikube

	GitLab CI/CD
	Gitlab - Kubernetes integration

	GitLab Runner

	Github
	Creating Pull Requests in batch

	Merge bot for GitHub

	Review bot for GitHub

	Notifications to Telegram Group

	IFTTT
	GitHub Integration with IFTTT

	Lint Checks
	Preparation

	Running checks

	Remote Development
	Usage

	Containers administration

Docker

Kubernetes

Contents:

	Kubernetes solutions

	Minikube
	Installing Minikube

	Starting Minukube

	Iteract with your cluster

	Dashboard

	Stopping Minikube

Kubernetes solutions

There is a lot of ways to run your Kubernetes cluster on different platforms including single-node Minikube with completely automated setup on your own laptop or managed cluster on Google Compute Engine.

In this documentation we will consider intallation of Minikube cluster on your server or personal computer to give you an idea of ​​how quickly configure minimal working cluster on one machine.

Different platforms and solutions you can find in official kubernetes documentation [https://kubernetes.io/docs/setup/pick-right-solution/]

There should be no difference in where and how you set up your cluster. So you can pick up any of the solutions presented instead.

Minikube

Minikube is easiest way to run single-node Kubernetes cluster locally. Setup is completely automated so it is just matter of installation and starting the cluster.

Installing Minikube

In order to install Minikube you need to:

	Enable Intel Virtualization Technology or AMD virtualization in your computer’s BIOS

	Install VirtualBox [https://www.virtualbox.org/wiki/Downloads] or alternatively you can install other hypervisors: VMware Fusion, HyperKit, KVM or Hyper-V depending on your OS

	Install kubectl [https://kubernetes.io/docs/tasks/tools/install-kubectl/] according to the instructions

	Install latest Minikube [https://github.com/kubernetes/minikube/releases]

Starting Minukube

To start cluster you can just run:

minikube start

Depending on the hypervisor you want to use you can specifiy it by –vm-driver option and choose amount of memory you want Minikube to use:

minikube start --memory 4096 --vm-driver virtualbox

Minikube also supports a –vm-driver=none option that runs the Kubernetes components on the host and not in a VM. In this case you should have Docker installed.

Iteract with your cluster

Now you can access your cluster with kubectl proxy:

kubectl proxy --port=8001 &

And you can get the API with curl or any browser:

curl http://localhost:8001/api/

Dashboard

Minikube automaticly have Kubernetes Dashboard - web-based UI for Kubernetes clusters. It allows you to monitor and manage aplications on your cluster.

To access dashboard you can just type in console:

minikube dashboard

And it will open in your default browser.

Or to get url you can run:

minikube dashboard --url

Stopping Minikube

To stop your cluster just run:

minikube stop

GitLab CI/CD

Contents:

	Gitlab - Kubernetes integration
	Adding an existing Kubernetes cluster

	Installing applications

	GitLab Runner
	One-click install

	Deploy GitLab Runner manually

Gitlab - Kubernetes integration

You can easily connect existing Kubernetes cluster to your GitLab project. With connected cluster you can use Review Apps, deploy your applications and run your pipelines.

Adding an existing Kubernetes cluster

In order to add your existing Kubernetes cluster to your project:

	Navigate to your project’s Operations > Kubernetes page.

	Click on Add Kubernetes cluster.

	Click on Add an existing Kubernetes cluster and fill in the details:

	Kubernetes cluster name (required) - The name you wish to give the cluster.

	Environment scope (required) - The associated environment to this cluster. You can leave it with “*”.

	API URL (required) - It’s the URL that GitLab uses to access the Kubernetes base API. You can access it locally with cubectl proxy and need to make it accessible externially. In the end you should have something like “https://kubernetes.example.com”.

	CA certificate (optional) - If the API is using a self-signed TLS certificate, you’ll also need to include the ca.crt contents here.

	Token - GitLab authenticates against Kubernetes using service tokens, which are scoped to a particular namespace. If you don’t have a service token yet, you can follow the Kubernetes documentation to create one. You can also view or create service tokens in the Kubernetes dashboard (under Config > Secrets). The account that will issue the service token must have admin privileges on the cluster.

	Project namespace (optional) - You don’t have to fill it in; by leaving it blank, GitLab will create one for you.

	Click on Create Kubernetes cluster.

After a couple of minutes, your cluster will be ready to go.

If you using Minukube cluster or just have Kubernetes Dashboard you can get CA certificate and token in Dashboard. You need to choose default namespace and click on secrets. There should be default token with CA and token inside.

Installing applications

GitLab provides a one-click install for some applications which will be added directly to your connected Kubernetes cluster.

To one-click install applications:

	Navigate to your project’s Operations > Kubernetes page.

	Click on your connected cluster.

	Click install button beside the application you need.

You need to install Helm Tiller before you install any other application

GitLab Runner

There is a different ways to install GitLab Runner on your Kubernetes cluster.

One-click install

If your Kubernetes cluster is connected to your GitLab project you can just:

	Navigate to your project’s Operations > Kubernetes page.

	Click on your connected cluster.

	Install Helm Tiller by clicking the install button beside it.

	Install GitLab Runner by clicking the install button beside it.

Deploy GitLab Runner manually

If you want to cofigure everything yourself, you can deploy runner manually.

First you need to create namespace for your future deployment:

kubectl create namespace gitlab-runner-ns

To check your current namespaces:

kubectl get namespaces

Now set created namespace as default:

kubectl config set-context $(kubectl config current-context) --namespace=gitlab-runner-ns

To deployment we will need to create a deployment.yaml, config-map.yaml and secret.yaml.

Start with config-map.yaml:

apiVersion: v1
kind: ConfigMap
metadata:
 name: gitlab-runner-cm
 namespace: gitlab-runner-ns
data:
 config.toml: |
 concurrent = 10
 check_interval = 30

 entrypoint: |
 #!/bin/bash

 set -xe

 cp /scripts/config.toml /etc/gitlab-runner/

 # Register the runner
 /entrypoint register --non-interactive \
 --url $GITLAB_URL \
 --executor kubernetes

 # Start the runner
 /entrypoint run --user=gitlab-runner \
 --working-directory=/home/gitlab-runner

And create config map with:

kubectl create -f config-map.yaml

For sake of not showing your token in clear in your deployment file we need to create secret.yaml with token as base 64 string:

echo -n "your_token" | base64

apiVersion: v1
kind: Secret
metadata:
 name: gitlab-runner-secret
 namespace: gitlab-runner-ns
type: Opaque
data:
 runner-registration-token: <your token as base 64 string>

Now, create secret with:

kubectl create --validate -f secret.yaml

And finally deployment.yaml file:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: gitlab-runner
 namespace: gitlab-runner-ns
spec:
 replicas: 1
 selector:
 matchLabels:
 name: gitlab-runner
 template:
 metadata:
 labels:
 name: gitlab-runner
 spec:
 containers:
 - name: gitlab-runner
 image: gitlab/gitlab-runner:alpine-v9.3.0
 command: ["/bin/bash", "/scripts/entrypoint"]
 env:
 - name: GITLAB_URL
 value: "https://gitlab.com/"
 - name: REGISTRATION_TOKEN
 valueFrom:
 secretKeyRef:
 name: gitlab-runner-secret
 key: runner-registration-token
 imagePullPolicy: Always
 volumeMounts:
 - name: config
 mountPath: /scripts
 - name: cacerts
 mountPath: /etc/gitlab-runner/certs
 readOnly: true
 restartPolicy: Always
 volumes:
 - name: config
 configMap:
 name: gitlab-runner-cm
 - name: cacerts
 hostPath:
 path: /var/mozilla

For creating runners gitlab needs ClusterRoleBinding with cluster-admin role. So before deploying we creating cluster role:

kubectl create clusterrolebinding gitlab-cluster-admin --clusterrole=cluster-admin --group=system:serviceaccounts --namespace=gitlab-runner-ns

And now creating deployment:

kubectl create --validate -f deployment.yaml

Github

Contents:

	Creating Pull Requests in batch
	Prerequisites

	Script

	Merge bot for GitHub
	Prepare IFTTT’s hooks

	Create AWS Lambda function

	Create IFTTT applets

	Logs

	Review bot for GitHub
	Create AWS Lambda function

	Logs

	Roadmap

	Notifications to Telegram Group
	Telegram Bot

	Telegram Group

	Secrets

	Github Actions

	Try it out

Creating Pull Requests in batch

Prerequisites

	Add a SSH key to your GitHub account. See: https://help.github.com/en/articles/adding-a-new-ssh-key-to-your-github-account

	Install hub. Look this: https://github.com/github/hub#installation

Script

Make a script make-prs.sh with following content

#!/bin/bash

ORGANIZATION GITHUB URL
ORG=it-projects-llc
UPSTREAM_URL_GIT=https://github.com/$ORG

DEVELOPER INFO
USERNAME=yelizariev

WHERE TO CLONE
DIRECTORY_CLONE=$(pwd)

DESCRIPTION OF THE UPDATES
MSG=":shield: travis.yml notifications webhook travis"
BRANCH_SUFFIX=travis-notifications

REPOS=(
 misc-addons
 saas-addons
 pos-addons
 access-addons
 mail-addons
 website-addons
 sync-addons
)
BRANCHES=(
 10.0
 11.0
 12.0
)

for REPO in "${REPOS[@]}"; do
 if [! -d $DIRECTORY_CLONE/$REPO]
 then
 git clone $UPSTREAM_URL_GIT/$REPO.git $DIRECTORY_CLONE/$REPO
 cd $DIRECTORY_CLONE/$REPO
 git remote rename origin upstream
 git remote add origin git@github.com:$USERNAME/$REPO.git
 fi
 cd $DIRECTORY_CLONE/$REPO
 for BRANCH in "${BRANCHES[@]}"; do
 git fetch upstream $BRANCH
 git checkout -b $BRANCH-$BRANCH_SUFFIX upstream/$BRANCH

 # CHECK THAT UPDATES ARE NOT DONE YET
 if grep -qx ' on_failure: change' .travis.yml
 then
 echo "File are already updated in $REPO#$BRANCH"
 else
 # MAKE UPDATE
 { echo ' webhooks:'; echo ' on_failure: change'; echo ' urls:'; echo ' - "https://ci.it-projects.info/travis/on_failure/change"';} >> ./.travis.yml
 fi
 git commit -a -m "$MSG"
 git push origin $BRANCH-$BRANCH_SUFFIX
 hub pull-request -b it-projects-llc:$BRANCH -m "$MSG"
 done
done

Update script according to you needs

Run it with bash make-prs.sh

Merge bot for GitHub

The script gives the right to a certain circle of people to merge branches in the repository by sending the certain comment in the pull request.

Prepare IFTTT’s hooks

	Log in / Sign up at https://ifttt.com/

	Click on Documentation button here: https://ifttt.com/maker_webhooks

	Replace {event} with event name, for example travis-not-finished-pr, travis-success-pr and travis-failed-pr. Save the links you got.

Create AWS Lambda function

Create lambda function [https://console.aws.amazon.com/lambda/] with following settings:

	Runtime

Use Python 3.6

	Environment variables

	GITHUB_TOKEN – generate one in https://github.com/settings/tokens . Select scope repo.

	USERNAMES – use comma-separated list of Github’s usernames without @.

	LOG_LEVEL – optional. Set to DEBUG to get detailed logs in AWS CloudWatch.

	MSG_RQST_MERGE – message-request for merge. Default: I approve to merge it now

	IFTTT_HOOK_RED_PR, IFTTT_HOOK_GREEN_PR, IFTTT_HOOK_NOT_FINISHED_PR – use IFTTT’s hooks

	Trigger

Use API Gateway. Once you configure it and save, you will see API endpoint under Api Gateway details section. Use option Open

Now register the URL as webhook at github: https://developer.github.com/webhooks/creating/.
Use following webhook settings:

	Payload URL – the URL

	Content Type: application/json

	Which events would you like to trigger this webhook? – Let me select individual events and then select [x] Issue comments

	Function Code

	Copy-paste this code: https://gitlab.com/itpp/odoo-devops/raw/master/tools/github-merge-bot/lambda_function.py

	Basic settings

	Change time running function by 15 sec – Timeout (default 3 sec)

Create IFTTT applets

	If – Service Webhooks.

Use {event} from Prepare IFTTT's hooks of this instruction. For example: Event Name = travis-not-finished-pr, Event Name = travis-failed-pr.

	Then – whatever you like. For actions with text ingredients use following for failed, success and not finished checks:

	Value1 – Author of the merge

	Value2 – Author of the pull-request

	Value3 – Link to pull-request

Logs

	AWS CloudWatch: https://console.aws.amazon.com/cloudwatch . Choice tab Logs

	IFTTT logs: https://ifttt.com/activity

Review bot for GitHub

This github bot posts review of pull-requests with odoo modules: list of updated files (installable and non-installable), new features to test (according to doc/changelog.rst file)

Create AWS Lambda function

Create lambda function [https://console.aws.amazon.com/lambda/] with following settings:

	Runtime

Use Python 3.6

	Environment variables

	GITHUB_TOKEN – generate one in https://github.com/settings/tokens . Select scope repo.

	LOG_LEVEL – optional. Set to DEBUG to get detailed logs in AWS CloudWatch.

	Trigger

Use API Gateway. Once you configure it and save, you will see API endpoint under Api Gateway details section. Use option Open

Now register the URL as webhook at github: https://developer.github.com/webhooks/creating/.
Use following webhook settings:

	Payload URL – the URL

	Content Type: application/json

	Which events would you like to trigger this webhook? – Let me select individual events and then select [x] Pull request

	Function Code

	Use this commands:

mkdir /tmp/github-review-bot
cd /tmp/github-review-bot

pip3 install pyGithub -t .
wget https://gitlab.com/itpp/odoo-devops/raw/master/tools/github-review-bot/lambda_function.py
wget https://gitlab.com/itpp/odoo-devops/raw/master/tools/github-review-bot/text_tree.py
zip -r /tmp/github-review-bot.zip *

	Then set Code Entry type to Upload a .zip file and select the created zip file

	Basic settings

	Change time running function to 50 sec – Timeout (default 3 sec)

Logs

	AWS CloudWatch: https://console.aws.amazon.com/cloudwatch . Choose tab Logs

Roadmap

	TODO: Deleted files should be listed with tag [DELETED]

	TODO: Renamed files should be listed with tag [RENAMED from path/to/original-file] (for new files) and [RENAMED] (for original place of the file)

	TODO: New modules (e.g. root __init__.py didn’t exist) should be marked with tag [NEW], e.g. ├─ [NEW] pos_debt_notebook/

	TODO: Ported modules (installable attribute is changed from False to True) should be marked with tag [PORT], e.g. ├─ [PORT] pos_debt_notebook/

	Updating review doesn’t work without write access to the repo: github API returns 404. See https://gitlab.com/itpp/odoo-devops/issues/3

Notifications to Telegram Group

In this example we make a bot, that will send notifications to telegram group on
new issues. You can slightly change the script to use other type of events.

Telegram Bot

	In telegram client open BotFather [https://t.me/botfather]

	Send /newbot command to create a new bot

	Follow instruction to set bot name and get bot token

	Keep your token secure and store safely, it can be used by anyone to control your bot

Telegram Group

Add created bot to the group, where it will send notifications

You will need Group ID. To get one, temporarly add Get My ID [https://telegram.me/itpp_myid_bot] bot to the group.

Secrets

Add following secrets [https://help.github.com/en/articles/virtual-environments-for-github-actions#creating-and-using-secrets-encrypted-variables]

	TELEGRAM_TOKEN – bot token

	TELEGRAM_CHAT_ID – Group ID. Normally, it’s negative integer

Github Actions

Create .github/workflows/main.yml file (you can also use [Set up a workflow yourself] button at Actions tab of the repository page)

name: Telegram Notifications

on:
 issues:
 types: [opened, reopened, deleted, closed]

jobs:
 notify:

 runs-on: ubuntu-latest

 steps:
 - name: Send notifications to Telegram
 run: curl -s -X POST https://api.telegram.org/bot${{ secrets.TELEGRAM_TOKEN }}/sendMessage -d chat_id=${{ secrets.TELEGRAM_CHAT_ID }} -d text="${MESSAGE}" >> /dev/null
 env:
 MESSAGE: "Issue ${{ github.event.action }}: \n${{ github.event.issue.html_url }}"

Try it out

	Create new issue

	RESULT: bot sends a notification

IFTTT

Contents:

	GitHub Integration with IFTTT
	Trigger Travis Success / Failure

GitHub Integration with IFTTT

Trigger Travis Success / Failure

Prepare IFTTT’s hooks

	Log in / Sign up at https://ifttt.com/

	Click on Documentation button here: https://ifttt.com/maker_webhooks

	Replace {event} with event name, for example travis-success-pr. Do the same for another event, for example travis-failed-pr and travis-failed-branch. Save the links you got.

Create AWS Lambda function

Create lambda function [https://console.aws.amazon.com/lambda/] with following settings:

	Runtime

Use Python 2.7

	Environment variables

	GITHUB_TOKEN – generate one in https://github.com/settings/tokens . No settings are needed for public repositories.

	IFTTT_HOOK_GREEN_PR, IFTTT_HOOK_RED_PR, IFTTT_HOOK_RED_BRANCH – use IFTTT’s hooks.

	IGNORE_BRANCHES – optional. List of branches separated by comma to ignore to notify.

	LOG_LEVEL – optional. Set to DEBUG to get detailed logs in AWS CloudWatch.

	Trigger

Use API Gateway. Once you configure it and save, you will see API endpoint under Api Gateway details section. Use option Open

Now register the URL as webhook at github: https://developer.github.com/webhooks/creating/.
Use following webhook settings:

	Payload URL – the URL

	Content Type: application/json

	Which events would you like to trigger this webhook? – Let me select individual events and then select [x] Check runs

	Function Code

	Copy-paste this code: https://gitlab.com/itpp/odoo-devops/raw/master/tools/github-ifttt/lambda_function.py

Create IFTTT applets

	If – Service Webhooks

Use {event} from Prepare IFTTT's hooks of this instruction. For example: Event Name = travis-success-pr, Event Name = travis-failed-pr and Event Name = travis-failed-branch

	Then – whatever you like. For actions with text ingredients use following:

	Value1 – Author of the pull-request

	Value2 – Link to pull-request

	Value3 – Link to the travis check

and for checks of stable branch:

	Value1 – Name of the branch

	Value2 – Name of the repo

	Value3 – Link to the travis check

Travis settings

	Update .travis.yml to get a notification in lambda when travis check is finished. You can configure either always notify on failure or only when previous check was successful. Check Travis Documentation for details: https://docs.travis-ci.com/user/notifications/#configuring-webhook-notifications

	Look it for example:

notifications:
 webhooks:
 on_failure: change
 urls:
 - "https://9ltrkrik2l.execute-api.eu-central-1.amazonaws.com/default/TriggerTravis/"

Logs

	AWS CloudWatch: https://console.aws.amazon.com/cloudwatch . Choice tab Logs

	IFTTT logs: https://ifttt.com/activity

Lint Checks

Preparation

Execute once per computer

cd
git clone https://github.com/it-projects-llc/maintainer-quality-tools.git
cd maintainer-quality-tools/travis
LINT_CHECK="1" sudo -E bash -x travis_install_nightly 8.0

echo "export PATH=\$PATH:$(pwd)/" >> ~/.bashrc
source ~/.bashrc

Running checks

cd YOUR-PATH/TO/REPOSTORY
LINT_CHECK="1" TRAVIS_BUILD_DIR="." VERSION="12.0" travis_run_tests 12.0

Remote Development

The section contains instructions to setup remote development environment. That is developer runs odoo and probably other tools on remote server rather on his machine. Advantages of this approach are:

	easy way to provide big computing capacity

	the same environment from any device

	easy way to demonstrate work

Usage

	SSH agent forwarding

	How to mount local files on a server

	How to edit server files locally

	Remote desktop via X2GO

Containers administration

	LXD Containers

SSH agent forwarding

To send commit or get access to private repositories you can use either login-password authentication or ssh keys. In later case you can face a problem to do it on remote server, because your private ssh key is not installed there. The good news is that you don’t need to do it. You can “forward ssh keys”. Just add -A to your ssh command or add following lines to your ssh config (~/.ssh/config) on your (local) computer:

Host your.dev.server.example.com
 ForwardAgent yes

Then connect to your server and type to test:

ssh -T git@github.com

For more information see: https://developer.github.com/guides/using-ssh-agent-forwarding/

Putty users (Windows)

	install Pageant SSH agent (pageant.exe) https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

	add your keys to Pageant SSH

	enable ssh agent forwarding in putty settings

How to mount local files on a server

sshfs

On your local machine:

Step 1. Install ssh server on your local machine
TODO
Step 2. Configure ssh keys on you local machine
cat cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
Step 3. Connect to your server
ssh USERNAME@SERVER -p 22 -A -R 2222:localhost:22

On your remote server:

Step 4. Mount your directory on remote server
about allow_other check this: https://github.com/moby/moby/issues/27026#issuecomment-253579983
sshfs -p 2222 -o idmap=user,nonempty,allow_other \
 LOCALUSERNAME@127.0.0.1:/PATH/TO/LOCAL/FOLDER /PATH/TO/REMOTE/FOLDER

to unmount:
fusermount -u /PATH/TO/REMOTE/FOLDER

References

	https://superuser.com/questions/616182/how-to-mount-local-directory-to-remote-like-sshfs

How to edit server files locally

sshfs -p 22 -o idmap=user,nonempty USERNAME@REMOTE-SERVER:/path/to/REMOTE/folder /path/to/LOCAL/folder

Remote desktop via X2GO

Deploying X2GO server

x2go allows you to run remotely browser (or any other application on x-server)

	Connect to your server:

	install x2go server [https://wiki.x2go.org/doku.php/doc:installation:x2goserver] :

sudo add-apt-repository ppa:x2go/stable && \
sudo apt-get update && \
sudo apt-get install -y x2goserver x2goserver-xsession

	install desktop environment you prefer, e.g. LXDE:

sudo apt-get install lubuntu-desktop
choose lightdm

	Install browser Pale Moon [http://linux.palemoon.org]

http://linux.palemoon.org
sudo sh -c "echo 'deb http://download.opensuse.org/repositories/home:/stevenpusser/xUbuntu_18.04/ /' > /etc/apt/sources.list.d/home:stevenpusser.list" && \
sudo apt-get update && \
sudo apt-get install palemoon

X2GO Client

	install x2goclient

Ubuntu:

sudo add-apt-repository ppa:x2go/stable && \
sudo apt-get update && \
sudo apt-get install x2goclient

References:

	https://www.howtoforge.com/tutorial/x2go-server-ubuntu-14-04/

	http://wiki.x2go.org/doku.php/doc:installation:x2goclient

	Run client:

x2goclient

	create a new session with the settings below and connect to it (we assume that you have user named “noroot” with ssh keys configured):

Host : YOUHOST
Port : 22
Session type: LXDE
[x] Try auto Login
Input / Output: Use Whole Display
Username: noroot

LXD Containers

For understanding LXC see https://wiki.debian.org/LXC

Based on:
lxd + docker: https://stgraber.org/2016/04/13/lxd-2-0-docker-in-lxd-712/
lxd network (static ip): https://stgraber.org/2016/10/27/network-management-with-lxd-2-3/
LXD_NETWORK="dev-network2"

install lxd 2.3+
apt-get install software-properties-common iptables-persistent

add-apt-repository ppa:ubuntu-lxc/lxd-stable
apt-get update
apt-get dist-upgrade
apt-get install lxd

init lxd
lxd init

init network
lxc network create ${LXD_NETWORK}
lxc network show ${LXD_NETWORK} # check ipv4.address field

############################
Per each Developer
GITHUB_USERNAME="yelizariev"
CONTAINER="${GITHUB_USERNAME}"
SERVER_DOMAIN="${GITHUB_USERNAME}.dev.it-projects.info"
NGINX_CONF="dev-${GITHUB_USERNAME}.conf"
LOCAL_IP="10.37.82.100" # use one from network subnet
PORT="10100" # unique per each developer

https://discuss.linuxcontainers.org/t/docker-cannot-write-to-devices-allow/998/3
read -r -d '' RAW_LXC <<EOF
lxc.apparmor.profile=unconfined
lxc.mount.auto="proc:rw sys:rw cgroup:rw"
lxc.cgroup.devices.allow=a
lxc.cap.drop=
EOF
lxc init ubuntu-daily:18.04 ${CONTAINER} -p default && \
lxc network attach ${LXD_NETWORK} ${CONTAINER} eth0 && \
lxc config device set ${CONTAINER} eth0 ipv4.address ${LOCAL_IP} && \
lxc config set ${CONTAINER} security.privileged true && \
allow run docker in previliged mode.
https://discuss.linuxcontainers.org/t/failed-to-write-a-rwm-to-devices-allow-operation-not-permitted-in-privileged-container/925/3
lxc config set ${CONTAINER} raw.lxc "$RAW_LXC"

forward ssh port
iptables -t nat -A PREROUTING -p tcp --dport ${PORT} -j DNAT \
 --to-destination ${LOCAL_IP}:22

save iptables record. Otherwise it's disappeared after rebooting
sudo netfilter-persistent save
sudo netfilter-persistent reload

PASS="$(< /dev/urandom tr -dc _A-Za-z0-9 | head -c${1:-32};echo;)"
lxc start ${CONTAINER}

lxc exec ${CONTAINER} -- apt-get update && \
lxc exec ${CONTAINER} -- apt dist-upgrade -y

colorize prompt:
lxc exec ${CONTAINER} -- sed -i "s/#force_color_prompt=yes/force_color_prompt=yes/" /root/.bashrc && \
lxc exec ${CONTAINER} -- sed -i "s/01;32m/01;36m/" /root/.bashrc && \
install some packages
lxc exec ${CONTAINER} -- apt install docker.io htop python3-pip -y && \
lxc exec ${CONTAINER} -- ln -s /usr/bin/pip3 /usr/bin/pip && \
lxc exec ${CONTAINER} -- pip install odooup && \
https://docs.docker.com/v17.09/compose/install/#install-compose
lxc exec ${CONTAINER} -- curl -L https://github.com/docker/compose/releases/download/1.18.0/docker-compose-`uname -s`-`uname -m` -o /usr/local/bin/docker-compose && \
lxc exec ${CONTAINER} -- chmod +x /usr/local/bin/docker-compose && \
update git. See https://github.com/xoe-labs/odooup/issues/8
TODO: this may not be needed in ubuntu 18
lxc exec ${CONTAINER} -- add-apt-repository ppa:git-core/ppa -y && \
lxc exec ${CONTAINER} -- apt-get update && \
lxc exec ${CONTAINER} -- apt-get install git -y && \
lxc exec ${CONTAINER} -- adduser noroot --disabled-password --gecos "" && \
lxc exec ${CONTAINER} -- mkdir -p /root/.ssh && \
lxc exec ${CONTAINER} -- bash -c "curl --silent https://github.com/${GITHUB_USERNAME}.keys >> /root/.ssh/authorized_keys" && \
access for noroot
lxc exec ${CONTAINER} -- bash -c "echo $PASS > /root/noroot-password" && \
lxc exec ${CONTAINER} -- bash -c "echo noroot:$PASS | chpasswd " && \
lxc exec ${CONTAINER} -- sudo -u "noroot" bash -c "mkdir -p /home/noroot/.ssh" && \
lxc exec ${CONTAINER} -- sudo -u "noroot" bash -c "curl --silent https://github.com/${GITHUB_USERNAME}.keys >> /home/noroot/.ssh/authorized_keys" && \
lxc exec ${CONTAINER} -- sudo -u "noroot" sed -i "s/01;32m/01;93m/" /home/noroot/.bashrc && \
Manage Docker as a non-root user https://docs.docker.com/install/linux/linux-postinstall/
lxc exec ${CONTAINER} -- usermod -aG docker noroot && \
lxc exec ${CONTAINER} -- usermod -aG sudo noroot && \
lxc exec ${CONTAINER} -- locale-gen --purge en_US.UTF-8 && \
lxc exec ${CONTAINER} -- bash -c "echo -e 'LANG=\"en_US.UTF-8\"\nLANGUAGE=\"en_US:en\"\n' > /etc/default/locale"

lxc config device add ${CONTAINER} sharedcachenoroot disk path=/home/noroot/.cache source=/var/lxc/share/cache && \
lxc stop ${CONTAINER} && \
lxc start ${CONTAINER}

nginx on host machine
cd /tmp/
curl -s https://gitlab.com/itpp/odoo-devops/raw/master/docs/remote-dev/lxd/nginx.conf > nginx.conf
sed -i "s/NGINX_SERVER_DOMAIN/.${SERVER_DOMAIN}/g" nginx.conf
sed -i "s/SERVER_HOST/${LOCAL_IP}/g" nginx.conf
cp nginx.conf /etc/nginx/sites-available/${NGINX_CONF}
ln -s /etc/nginx/sites-available/${NGINX_CONF} /etc/nginx/sites-enabled/${NGINX_CONF}
then restart nginx in a usual way

###################
Control commands

delete container
lxc delete CONTAINER-NAME

see iptables rules
iptables -L -t nat

delete nat rule
iptables -t nat -D PREROUTING POSITION_NUMBER

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Odoo DevOps

 		
 Docker

 		
 Kubernetes

 		
 Kubernetes solutions

 		
 Minikube

 		
 Installing Minikube

 		
 Starting Minukube

 		
 Iteract with your cluster

 		
 Dashboard

 		
 Stopping Minikube

 		
 GitLab CI/CD

 		
 Gitlab - Kubernetes integration

 		
 Adding an existing Kubernetes cluster

 		
 Installing applications

 		
 GitLab Runner

 		
 One-click install

 		
 Deploy GitLab Runner manually

 		
 Github

 		
 Creating Pull Requests in batch

 		
 Prerequisites

 		
 Script

 		
 Merge bot for GitHub

 		
 Prepare IFTTT’s hooks

 		
 Create AWS Lambda function

 		
 Create IFTTT applets

 		
 Logs

 		
 Review bot for GitHub

 		
 Create AWS Lambda function

 		
 Logs

 		
 Roadmap

 		
 Notifications to Telegram Group

 		
 Telegram Bot

 		
 Telegram Group

 		
 Secrets

 		
 Github Actions

 		
 Try it out

 		
 IFTTT

 		
 GitHub Integration with IFTTT

 		
 Trigger Travis Success / Failure

 		
 Lint Checks

 		
 Preparation

 		
 Running checks

 		
 Remote Development

 		
 Usage

 		
 SSH agent forwarding

 		
 How to mount local files on a server

 		
 How to edit server files locally

 		
 Remote desktop via X2GO

 		
 Containers administration

 		
 LXD Containers

_static/up.png

_static/up-pressed.png

